Decision Making to Select the Best Order Quantity (BOQ) from Supplier using Genetic Algorithm

Watheq H. Laith ${ }^{1}$, Swsan S. Abed Ali ${ }^{2}$, Mahmoud A. Mahmoud ${ }^{2}$
Dept of Statistical, College of Adm and Econ., University of Sumer, Al-Refaee, Thi-qar, Iraq ${ }^{1}$
Branch of Industrial Engineering, Dept of Production Engg and Metallurgy, University of Technology, Baghdad, Iraq ${ }^{2}$

Abstract

Manufacturers need to have a good supply chain management system in order to achieve low inventory levels, short lead times and adjustability to meet customer demands at minimal total operation cost. The most important drawback of existing methods used to minimize inventory costs as Just-in-time (JIT) methodology or to minimize transportation and order costs as Economic Order Model (EOQ). This minimization strategy may not be able to give the best order quantity because of the relationship between inventory cost and transportation cost, In this paper, we used genetic algorithm (GA) to reduce the inventory and transportation costs together to determine the Best Order Quantity (BOQ). The main advantage of this new method, it is covers pull system, push systems, short planning horizon, and long planning horizon.

Keywords: Economic Order Model (EOQ), genetic algorithm (GA), Best Order Quantity (BOQ) Just-in-time (JIT).

1. INTRODUCTION

Companies select Single or multiple suppliers to fulfill the demand, and replenishment order quantity is split into different portions for each supplier at the same time. There are two types of supplier selection problem. In the first type of supplier selection, a single supplier can fulfill the entire buyer's demand. Only one decision should be made in this situation: which supplier is the best. In the other type of supplier selection, there exists no single supplier who can satisfy the entire buyer's needs. In this situation, the buyer has to split order quantities among suppliers for having a stable environment of competitiveness [1].
Davari and et al (2008) presented a multiple suppliers and multiple products model. There were three objectives to achieve, minimizing purchasing cost, rejected units and late delivered units [2].
Sarker and et al. (2008) consider EOQ-like batch sizing models that account for the possibility of rework being done during cycles, as well as after a certain number of cycles. Especially the latter deals with quite some fargoing issues and hence provides some useful insights. Nonetheless, the paper stresses the need for flawless production, since rework will always be more expensive than first-time right production [3].
Wadhwa and Ravindran (2010) introduced a multipeobjective multiple-supplier selection model for low risk and cost products. The first objective was to minimize the total purchasing cost, which concluded total variable cost, fixed cost, inventory holding cost and the bundling discounts. The second objective was to minimize the reject units under supplier capacity constraint. Shortage was not allowed and the multi-objective model was solved by preemptive goal programming [4].

Nouha and et al.(2014) Calculating the lot sizing depend Economic Order Quantity (EOQ), and the second method is the Periodic Order Quantity method which is based on the notion of orders economic period and calculated with Wilson's formula[5].

2. INTEGRATED PURCHASING AND SUPPLY MANAGEMENT PROCESS

The supply management function has grown from a tactical function of purchasing/procurement into a key strategic role within organizations. Supply management exists to explore business opportunities and implement supply strategies that deliver the most value possible to the organization, its suppliers, and its customers. Strategic supply management is the organization's primary source for collecting market intelligence and developing costreduction programs. Given the strategic nature of the supply function, the top supply management professional is usually a member of the organization's senior management team. In this leadership role, supply management professionals must be knowledgeable and understand all areas of the business in order to develop strategies consistent with the organization's goals and successful business procedures.

The purpose of supply management is to support the transformation of raw materials and component parts into shipped or inventory goods. The function of inventory in general is to decouple the entire transformation process. During the transformation process, materials are combined with labor, information, technology, and capital. Figure (1) focus of integrated purchasing and supply management [6].

Figure (1) Integrated Purchasing and Supply Management Process [6]

3. INVENTORY AND TRANSPORTATION COSTS

The manufacturer needs to order the items to meet their demand targets at a minimal total cost. Each item has different known demand targets at different time points .It also has fixed cost for each order placed and fixed holding cost. For purchasing and shipping costs, the price is dependent on the number of items that would be order. The model determines the number of each item to be purchased, at each time point, to meet the demand targets at these time points, in order to minimize the total cost. Proposal model costs in this paper include as following:

3.1. Order Costs

The ordering costs is a fixed cost of tracking trucks from a supplier to inventory, labor costs of processing orders , inspection and returning of poor quality products [7].Conversly to the costs fixed per unit, the inventory costs fixed per order comprises only a porition of the acquisition cost of inventory. This is the cost incurred each time a stock replenishment order is placed and includes costs such as import duties ,telphone calls , stock consolidator's fee, etc. Ordering cost was considered as a fixed component and part of other fixed costs [8].

3.2. Holding Costs

Holding cost define as the cost associated with having one unit in inventory for a period of time. [9]: The working of the (EOQ) is shown in figure (2), where a replenishment
order of quantity Q is placed the moment the inventory reaches a level R. the virtual stock level consist of the sum of the on-hand inventory of a product currently stored at a location, and the inventory that is en route to that specific location.
In comparing the virtual stock level of the (EOQ) model to that of the JIT model, shown in figure (3), it can be seen that the JIT model's virtual stock level fluctuates far less than that of the (EOQ) model. It should also be noted that the average stock level of a product in the JIT methodology is very close to the maximum number of unit stored, compared to the (EOQ) model where the average stock level is almost half of the maximum number of unit stored . [10].

3.3.Purchasing Costs:

It is the primary concern of any manufacturing organization to get an item at the right price. But right price need not be the lowest price. It is very difficult to determine the right price; general guidance can be had from the cost structure of the product. [11].

3.4. Transportation Costs:

Transportation costs will at first decline as the number of facilities increase, but will eventually increase as the number of facilities increase as a result of inbound and outbound transportation costs.

IARJSET

Figure (2) The fluctuation of inventory levels in the economic order quantity inventory control model [10].

Figure (3) The fluctuation of inventory levels in the Just-In-Time inventory control model [10].

The total cost of transporting products must be measured achieving this goal, but it may not be the optimal solution. and not only the cost of moving the products to the The first reason is, in the JIT model the manufacturers warehouse. With fewer locations saving can be obtained by making use of bulk distribution from the manufacturer or supplier. There will however be a certain point where there are too many warehouses and fewer inventory of the various item lines will have to be shipped to the warehouse to ensure that there are no items that are overstocked [12].

4. THE PROPOSAL MODEL TO DETERMINE THE BEST ORDER QUANTITY

Volatile customer expectations and rapidly changing markets cause short lifecycle items .Manufacturers need a strategy to decrease the risk of short lifecycle items and to increase efficiency. Receiving the items from suppliers at the same time of the demand target is one of the keys of decreasing the risk for the manufacturers.
Just -In-Time (JIT) model is one of the ways for
order the items whenever they need to meet the demand targets thus, it covers just pull systems and short planning horizon.
Anew model covers pull system, push systems, short planning horizon, and long planning horizon. In pull systems the demand targets for items at each time point are know but may be non-constant during a planning horizon. The manufacturers respond the demand targets an determine order quantities during a planning horizon. In push systems the demand targets and the planning horizon are know and constants.
The second reason is, by increasing order quantities, the price and shipping cost per item will be decreased, although in a JIT model, the price breaks for purchasing and transportation costs may not happen at all time points. Manufacturers need to have a good supply chain management system in order to achieve low inventory levels, short lead times and adjustability to meet customer
demands at minimal total operation cost. This cost is made up of inventory and transportation costs that are often minimized separately. This minimization strategy may not be able to give an optimal order quantity because of the relationship between inventory cost and transportation cost. In this paper, inventory and transportation cost are minimize together to determine optimal order quantities.

4.1. Assumptions:

The assumptions that are:
1-Items are always available for shipment.
2- Each item has constant holding and ordering costs.
3- The purchase and transportation costs are vary with order quantity.
4- The demand are known and non-constant.
5- The period between time points of planning horizon could be measured in hours, days, months, etc.

4.2. Parameters and Variables

We have a planning horizon with n time points, where the period between time point could be measured in hours, days, weeks , months or years , depending on the application. The set of all time points is $J=\{0,1,2,3, \ldots, n\}$. At time point $j \in J$, which is the beginning of time period j , item $i \in I$ has demand D_{i}^{j} and inventory level V_{i}^{j} where i is the index set of all items to be delivered by the supplier to the manufacturer and the initial inventory level V_{i}^{0} is know. The plant warehouse has limited stock capacity for each item $i \in I$ depend on lower and upper number of units for all item. The inventory level of item at the beginning of time period $j \in J$ is:

$$
\begin{align*}
& V_{i}^{j}=V_{i}^{j-1}+Q_{i}^{j}-D_{i}^{j-1}, \forall j \in\{0\} \tag{1}\\
& Q_{i}^{j} \geq 0, \text { and } Q_{i}^{0}=0, \quad \forall i \in I \tag{2}
\end{align*}
$$

The inventory level of item i should be greater than or equal to the demand at each time point j when there is no shortage in items, thus:

$$
\begin{equation*}
V_{i}^{j} \geq D_{i}^{j}, \forall i \in I, \forall j \in J \tag{3}
\end{equation*}
$$

The price of each item decrease when the number of item increases. The purchasing cost of order quantity is:

$$
\begin{equation*}
\text { ifLower } \leq D_{i}^{j}<\text { Upper then } P_{i}^{j}=p_{i}^{k} Q_{i}^{j} ; \forall i, j \tag{4}
\end{equation*}
$$

Where:
$P_{i}^{j}=$ Purchasing cost for item i in time j .
$p_{i}^{k}=$ The set of price breaks of item i ,weher $\mathrm{k}=\{$ $1,2,3, \ldots$.$\} .$
The transportation cost for shipping the items decrease when the number of item increases. Transportation cost of order quantity is:

$$
\begin{equation*}
\text { if }\left(\text { Lower } \leq D_{i}^{j}<\text { Upper }\right) \text { then } R_{i}^{j}=r_{i}^{m} Q_{i}^{j} ; \forall i, j \tag{5}
\end{equation*}
$$

Where:
$R_{i}^{j}=$ Transportation cost for item i in time j .
$r_{i}^{m}=$ The set of price breaks of item i , where $\mathrm{m}=\{1,2,3,$. The ordering cost for item i at time point j is:

$$
\begin{equation*}
O\left(Q_{i}^{j}\right)=o_{i} Q_{i}^{j} ; \forall i, j \tag{6}
\end{equation*}
$$

Where:
$o_{i}=$ Ordering cost for item i.
The total ordering cost for during whole planning horizon is :

$$
\begin{equation*}
O\left(q_{i}^{j}\right)=\sum_{i \in I} \sum_{j \in J} o_{i} q_{i}^{j} ; \forall i, j \tag{7}
\end{equation*}
$$

Item i has a unit holding cost h_{i} per time period. The total holding cost for storing order quantities of item i between time points j and $\mathrm{j}+1$ is:

$$
\begin{equation*}
H\left(Q_{i}^{j}\right)=h_{i} V_{i}^{j} ; \forall i, j \tag{8}
\end{equation*}
$$

The total holding cost for during whole planning horizon is :

$$
\begin{equation*}
\sum_{i \in I} \sum_{j \in J} H\left(Q_{i}^{j}\right)=\sum_{i \in I}\left(h_{i} V_{i}^{0}+\sum_{j \in J} h_{i} V_{i}^{j}\right) \tag{9}
\end{equation*}
$$

Let $C\left(Q_{i}^{j}\right)$ be the total cost, that is the summation of purchasing, ordering, holding and transportation costs. Form equations (6),(7),(8) and (9) we have :

$$
\begin{equation*}
C\left(Q_{i}^{j}\right)=\sum_{i \in I} \sum_{j \in J}\left(P\left(Q_{i}^{j}\right)+O\left(Q_{i}^{j}\right)=H\left(Q_{i}^{j}\right) R\left(Q_{i}^{j}\right)\right) \tag{10}
\end{equation*}
$$

For finding the optimum Q_{i}^{j}, we need to minimize the total cost , $C\left(q_{i}^{j}\right)$. Thus, the model is to:

$$
\begin{equation*}
\text { Minimize } \mathrm{Z}=C\left(q_{i}^{j}\right) \tag{11}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
\sum_{j=0}^{J} Q_{i}^{j}+V_{i}^{0} \geq \sum_{j=0}^{J} D_{i}^{j} ; \forall i, j \tag{12}
\end{equation*}
$$

$Q_{i}^{j}>=0$ and integer variable
The genetic algorithm starts with an initial set of solutions which is known as a population. The individuals of the population are called chromosomes which are evaluated according to a predefined fitness function, in our case the total cost. Each chromosome include several genes.The gene represents an order quantity of item i at time point j.

4.3. Solution of the Model

The genetic algorithm (GA) module in matlab's global optimization toolbox is used to solve equation (14); the

International Advanced Research Journal in Science, Engineering and Technology
 ISO 3297:2007 Certified
 Vol. 3, Issue 8, August 2016

genetic algorithm is a stochastic search method for solving existing population through crossover and mutation [13]. both constrained and unconstrained optimization problems that is based on natural selection process that mimics biological evaluation. It explores the solution space by using concepts taken from natural genetics and evolution theory [13] .
GA starts with an initial set of solutions which is known as
a population .The individuals of the population are called chromosomes which are evaluated according to a predefined fitness function, in our case the total cost .Each chromosome include several genes .The gene represents an order quantity of item I at time point j [14]. Anew

The proposal model to determine the best order quantity will illustrates with this example that contain on ten materials and twelve months.
The demands on material to this example are given in table (1) and first column of the table include the initial inventory levels V_{i}^{0}.
Table (2) shows the price costs and table (3) shows the transportation costs .

5. NUMERICAL EXAMPLE

Table (1) Material Demands of the Example

		$\boldsymbol{j} \in \boldsymbol{J}$												
		V_{i}^{0}			D_{i}^{3}									1
$\underset{\sim}{\omega}$	1	45	0	120	0	0	120	0	0	120	0	0	120	0
	2	60	50	50	50	50	50	50	50	50	50	50	50	50
	3	0	250	0	0	0	250	0	0	0	250	0	0	0
	4	20	135	135	135	135	0	0	0	0	135	0	135	0
	5	55	0	100	0	100	0	100	0	100	0	100	0	100
	6	25	50	250	50	250	50	250	50	250	50	250	50	250
	7	0	100	200	300	100	200	300	100	200	300	100	200	300
	8	25	80	150	100	80	150	100	80	150	100	80	150	100
	9	22	75	75	75	75	75	75	75	75	75	75	75	75
	10	35	85	45	85	45	85	45	85	45	85	45	85	45

Table(2) The Relation Between Price Costs Per Unit and Material Order Quantity of the Example

Material $i \in I$	Price Costs								
			1	2	3	4	5	6	7

IARJSET

ISO 3297:2007 Certified
Vol. 3, Issue 8, August 2016
Table (3) Transportation Costs Per Unit of the Example

Material $\mathrm{i} \in \mathrm{I}$	$\mathbf{r}_{\mathbf{i}}^{\mathbf{m}} \mathbf{r}_{\mathbf{i}}^{\mathbf{m}-\mathbf{1}}$						
	$0-500$	$500-1000$	$1000-1500$	$1500-2000$	$2000-2500$	$2500-3000$	$3000-4000$
1	$\mathbf{1 0 0}$	$\mathbf{9 5}$	$\mathbf{9 0}$	$\mathbf{8 5}$	$\mathbf{8 0}$	$\mathbf{7 0}$	$\mathbf{6 0}$
2	$\mathbf{2 5 0}$	$\mathbf{2 3 0}$	$\mathbf{2 0 0}$	$\mathbf{1 8 0}$	$\mathbf{1 7 0}$	$\mathbf{1 5 0}$	$\mathbf{1 5 0}$
3	$\mathbf{2 0 0}$	$\mathbf{1 6 5}$	$\mathbf{1 5 0}$	$\mathbf{1 3 5}$	$\mathbf{1 2 0}$	$\mathbf{1 0 0}$	$\mathbf{9 0}$
4	$\mathbf{2 3 0}$	$\mathbf{2 2 0}$	$\mathbf{2 1 0}$	$\mathbf{2 0 0}$	$\mathbf{1 8 0}$	$\mathbf{1 7 0}$	$\mathbf{1 5 0}$
5	$\mathbf{3 0 0}$	$\mathbf{2 7 0}$	$\mathbf{2 5 0}$	$\mathbf{2 4 0}$	$\mathbf{2 3 0}$	$\mathbf{2 1 0}$	$\mathbf{2 0 0}$
6	$\mathbf{1 2 0}$	$\mathbf{1 1 5}$	$\mathbf{1 0 0}$	$\mathbf{9 0}$	$\mathbf{7 5}$	$\mathbf{7 0}$	$\mathbf{6 5}$
7	$\mathbf{3 0 0}$	$\mathbf{2 8 0}$	$\mathbf{2 6 0}$	$\mathbf{2 4 0}$	$\mathbf{2 5 0}$	$\mathbf{2 2 0}$	$\mathbf{2 0 0}$
8	$\mathbf{1 8 0}$	$\mathbf{1 7 0}$	$\mathbf{1 5 0}$	$\mathbf{1 2 0}$	$\mathbf{1 1 0}$	$\mathbf{1 0 0}$	$\mathbf{9 0}$
9	$\mathbf{2 0 0}$	$\mathbf{1 8 0}$	$\mathbf{1 6 0}$	$\mathbf{1 4 0}$	$\mathbf{1 2 0}$	$\mathbf{1 1 0}$	$\mathbf{1 0 0}$
10	$\mathbf{2 5 0}$	$\mathbf{2 2 5}$	$\mathbf{2 0 0}$	$\mathbf{1 8 0}$	$\mathbf{1 7 0}$	$\mathbf{1 6 0}$	$\mathbf{1 5 0}$

Table (4) and (5) show fixed ordering cost o_{i} and holding cost h_{i} per month respectively .
Table (4) Ordering Cost of the Example

i	1	2	3	4	5	6	7	8	9	10
o_{i}	40	35	60	80	90	200	150	120	300	250

Table (5) Holding Cost of the Example

i	1	2	3	4	5	6	7	8	9	10
$\mathrm{~h}_{\mathrm{i}}$	4	3.5	6	8	9	20	15	12	30	25

6. SOLUTION OF THE NMERICAL EXAMPLE

The best order quantities for this numerical example can be shown in table (6).The solutions are given in Matlab
programming after 300 runs and each run gives various total cost with a various set of order quantities, then compares them to give best order quantities with minimal total cost that equal to 2172975 \$.

Table (6) Best Order Quantities

		$\mathbf{j} \in \mathbf{J}$											
		Q_{1}^{1}	$\mathbf{Q}_{\mathbf{i}}^{2}$	$\mathbf{Q}_{\mathbf{i}}^{3}$	$\mathbf{Q i}^{4}$	Q^{5}	Q_{i}^{6}	$\mathbf{Q i}_{\mathbf{i}}^{7}$	\mathbf{Q}_{1}^{8}	$\mathrm{Q}_{\mathrm{i}}^{9}$	Q^{10}	$\mathrm{Q}_{\mathrm{i}}^{11}$	$\mathbf{Q i}_{\mathbf{i}}^{12}$
$\underset{\sim}{\Psi}$	1	75	0	0	0	120	0	0	120	0	0	120	0
	2	0	40	50	50	100	50	50	50	50	50	50	0
	3	250	0	0	0	250	0	0	0	250	0	0	0
	4	115	135	135	135	0	0	0	0	135	0	135	0
	5	0	45	0	100	0	100	0	100	0	100	0	100
	6	25	250	50	250	50	250	50	250	50	250	50	250
	7	100	502	0	98	200	518	0	82	300	100	200	300
	8	55	150	100	80	150	100	80	150	100	80	150	100
	9	55	75	75	75	75	75	75	75	75	75	75	75
	10	50	45	85	45	85	45	85	45	85	45	85	45

Tables (7) and (8) shows inventory levels (V_{i}^{j}) and holding costs which are calculated from equtions 4 and 5,respectively.

Table (7) Inventory levels

		$\mathbf{j} \in \mathbf{J}$												
		$\mathrm{V}_{\mathrm{i}} \mathbf{0}$	$\mathrm{V}_{\mathbf{i}}{ }^{1}$	$\mathrm{V}_{\mathrm{i}}{ }^{2}$	V_{i}^{3}	$\mathrm{V}_{\mathrm{i}}^{4}$	$\mathrm{V}_{\mathrm{i}}{ }^{\text {b }}$	V_{i}^{6}	$\mathrm{V}_{\mathrm{i}}{ }^{7}$	$\mathrm{V}_{\mathrm{i}}{ }^{8}$	$\mathbf{V}_{\mathbf{i}}{ }^{\text {a }}$	$\mathrm{V}_{\mathrm{i}}{ }^{10}$	$\mathbf{V}_{\mathbf{i}}^{11}$	$\mathrm{V}_{\mathrm{i}}^{12}$
$\underset{\sim}{\underset{\sim}{*}}$	1	45	120	0	0	0	0	0	0	0	0	0	0	0
	2	60	10	0	0	0	50	50	50	50	50	50	50	0
	3	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	20	0	0	0	0	0	0	0	0	0	0	0	0
	5	55	55	0	0	0	0	0	0	0	0	0	0	0

IARJSET

ISO 3297:2007 Certified
Vol. 3, Issue 8, August 2016

$\mathbf{6}$	$\mathbf{2 5}$	$\mathbf{0}$											
$\mathbf{7}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3 0 2}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 1 8}$	$\mathbf{1 1 8}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{8}$	$\mathbf{2 5}$	$\mathbf{0}$											
$\mathbf{9}$	$\mathbf{2 2}$	$\mathbf{2}$											
$\mathbf{1 0}$	$\mathbf{3 5}$	$\mathbf{0}$											

Table (8) Holding Costs

		$\mathbf{j} \in \mathbf{J}$													Holding Costs
		0	1	2	3	4	5	6	7	8	9	10	11	12	
$\underset{\sim}{\Psi}$	1	180	480	0	0	0	0	0	0	0	0	0	0	0	660
	2	210	35	0	0	0	175	175	175	175	175	175	175	0	1470
	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	160	0	0	0	0	0	0	0	0	0	0	0	0	160
	5	495	495	0	0	0	0	0	0	0	0	0	0	0	990
	6	500	0	0	0	0	0	0	0	0	0	0	0	0	500
	7	0	0	4530	30	0	0	3270	1770	0	0	0	0	0	9600
	8	300	0	0	0	0	0	0	0	0	0	0	0	0	300
	9	660	60	60	60	60	60	60	60	60	60	60	60	60	1380
	10	875	0	0	0	0	0	0	0	0	0	0	0	0	875
Total Holding Costs															15935

Tables (8),(9) and (10) show the ordering costs, purchasing costs and transportation costs for all items in a year which are calculated from equtions 6 and 7 and 8,respectively.

Table (8) Ordering Costs

Table (9) Purchasing Costs

	$\mathbf{j} \in \mathrm{J}$												Purchasi ng Costs
	1	2	3	4	5	6	7	8	9	10	11	12	
1	712	0	0	0	1080	0	0	1080	0	0	1080	0	3952
2	0	1000	1250	2300	1250	1250	1250	1250	1250	1250	1250	0	13300
\square	3750	0	0	0	3750	0	0	0	3750	0	0	0	11250
4	2530	2970	2970	2970	0	0	0	0	2970	0	2970	0	17380
5	0	1575	0	3200	0	3200	0	3200	0	3200	0	3200	17575
6	1250	12000	2500	1200	2500	12000	2500	1200	2500	1200	2500	1200	85750

				0				0		0		0	
7	3600	16064	0	3528	7200	16576	0	2952	$\begin{gathered} 1080 \\ 0 \end{gathered}$	3600	7200	$\begin{gathered} 1080 \\ 0 \end{gathered}$	82320
8	990	2700	1800	1440	2700	1800	1440	2700	1800	1440	2700	1800	23310
9	1100	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	17600
10	900	810	1530	810	1530	810	1530	810	1530	810	1530	810	13410
Total Purchasing Costs													285847

Table (10) Transportation Costs

		$\mathbf{j} \in \mathbf{J}$												Transp ortation Costs
		1	2	3	4	5	6	7	8	9	10	11	12	
	1	7500	0	0	0	12000	0	0	12000	0	0	$\begin{gathered} 120 \\ 00 \end{gathered}$	0	43500
	2	0	$\begin{gathered} 1000 \\ 0 \\ \hline \end{gathered}$	12500	12500	12500	$\begin{aligned} & 125 \\ & 00 \end{aligned}$	12500	12500	12500	12500	$\begin{aligned} & 125 \\ & 00 \end{aligned}$	0	135000
	3	50000	0	0	0	50000	0	0	0	50000	0	0	0	150000
	4	333	391	391	391	0	0	0	0	391	0	391	0	2288
	5	0	146	0	325	0	325	0	325	0	325	0	325	1771
$\underset{\sim}{*}$	6	100	1000	200	1000	200	$\begin{gathered} 100 \\ 0 \end{gathered}$	200	1000	200	1000	200	$\begin{gathered} 100 \\ 0 \end{gathered}$	7100
	7	290	1290	0	284	580	$\begin{gathered} 133 \\ 1 \\ \hline \end{gathered}$	0	238	870	290	580	870	6623
	8	179	488	325	260	488	325	260	488	325	260	488	325	4211
	9	220	300	300	300	300	300	300	300	300	300	300	300	3520
	$\begin{aligned} & 1 \\ & \mathbf{0} \end{aligned}$	200	180	340	180	340	180	340	180	340	180	340	180	2980
Total Transportation Costs														356993

7. CONCLUSION

We have described model for determining the best order quantity of materials with minimum total cost from suppliers to any company. The cost in this paper consist from purchasing, ordering, holding and transportation costs. Ordering and holding costs are considered costs constant for each unit from materials, purchasing and transportation costs are considered variable costs. In this case, whenever increasing the quantity of materials lead to decrease the cost of the one unit. The results of this model explained its ability on assist the companies to determine the right order quantity at the right time with minimum total cost and uses with different time period such as days and months, etc.

REFERENCES

[1] Demirtas, E. A, and Ö. Üstün (2008) "An Integrated Multi objective Decision Making Process for Supplier Selection and Order Allocation." Omega V(36) ,pp(76-90).
[2] Davari, S., M. H. F. Zarandi, and I. B. Turksen (2008) "Supplier Selection in A Multi-item/multi-supplier Environment." Institute of Electrical and Electronics Engineers.
[3] Sarker B.R., Jamal A.M.M., Mondal S.(2008) Optimal Batch Sizing in a Multi-stage Production System with Rework Consideration, European Journal of Operational Research 184, 915-929.
[4] Wadhwa, V., and A. Ravindran (2010) "Multi-objective Supplier Selection Models." Proceedings of the Industrial Engineering Research Conference.
[5] Araújo M.C. and Alencar D.(2014) integrated model for supplier selection and performance evaluation, south African journal of industrial engineering august, Vol 26(2) pp. (41-55).
[6] Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson (2009) Purchasing and Supply Chain Management, four edition.
[7] Eiliat, H. (2013) ,Optimization of Operational Cost for a Single Supplier -Manufacturer Supply Chain, Master thesis, university of Windsor Industrial and manufacturing systems engineering.
[8] Bredenkamp, F.V. (2005) ,The Development of a Genetic Just-InTime Supply Chain Optimization Sostware Tool, Master thesis , Unversity of Stellenbosch, Industrial Engineering .
[9] Holstein, J. \& Olofsson, A. (2009)"Inventory Control - At Maintenance Unit Tetra Pak in Lund." Thesis. Lund University, Lund University - Production Management, http://www.pm.lth.se/ fileadmin/pm/Exjobb/Exjobb.
[10] Axsäter, S. (2006). Inventory Control, International Series in Operations Research \& Management Science, 2nd ed, New York: Springer.
[11] Eiliat , H. (2013) ,Optimization of Operational Cost for a Single Supplier -Manufacturer Supply Chain, Master thesis, university of Windsor Industrial and manufacturing systems engineering
[12] Burger F. (2003) , The impact of warehousing and transportation on supply chain effectiveness, Master thesis, Rand Afrikaans University .
[13] Pinedo, M. (2002). Scheduling: Theory, Algorithms and Systems, 2nd ed, Prentice Hall, Englewood Cliffs, NJ.
[14] Zhu, X. and Wilhelm, W.E. (2006). Scheduling and lot sizing with sequence-dependent setup: A literature review, IIE Transactions V (38), pp (987-1007).

